skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Davidson, Kenneth_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Predicting tropical tree demography is a key challenge in understanding the future dynamics of tropical forests. Although demographic processes are known to be regulated by leaf trait diversity, only the effect of inter‐specific trait variation has been evaluated, and it remains unclear as to what degree the intra‐specific trait plasticity across light gradients (hereafter light plasticity) regulates tree demography, and how this will further shape long‐term community and ecosystem dynamics. By combining in situ trait measurements and forest census data with a terrestrial biosphere model, we evaluated the impact of observation‐constrained light plasticity on demography, forest structure, and biomass dynamics in a Panamanian tropical moist forest. Modeled leaf physiological traits vary across and within plant functional types (PFT), which represent the inter‐specific trait variation and the intra‐specific light plasticity, respectively. The simulation using three non‐plastic PFTs underestimated 20‐year average understory growth rates by 41%, leading to a biased forest size structure and leaf area profile, and a 44% underestimate in long‐term biomass. The simulation using three plastic PFTs generated accurate understory growth rates, resulting in a realistic forest structure and a smaller biomass underestimate of 15%. Expanding simulated trait diversity using 18 nonplastic PFTs similarly improved the prediction of demography and biomass. However, only the plasticity‐enabled model predicted realistic long‐term PFT composition and within‐canopy trait profiles. Our results highlight the distinct role of light plasticity in regulating forest dynamics that cannot be replaced by inter‐specific trait diversity. Accurately representing light plasticity is thus crucial for trait‐based prediction of tropical forest dynamics. 
    more » « less